Subscribe to our newsletter to receive the latest news and events from TWI:

Subscribe >
Skip to content

Friction stir welding – joining the future of industry

Back to Media and Events 2013-07-creepimage-inspecting-creep-damage-in-critical-power-plant-components 2016-09-cutting-edge-technology-for-nuclear-decommissioning A career in welding inspection Additive manufactured medical implants to enter mainstream Additive Manufacturing UK Strategy update available for download Advanced electron beam facilities meet advanced industrial challenges Advanced ultrasonic full matrix capture inspection software launched Armourers & Brasiers' awards open for entries Art exhibition leads to new method of laser metal deposition Asbestos detection made easier and more reliable ASME issues White Paper on auditing of welding Audit shows TWI as integral to innovation Aviation Industry Corporation of China collaborates with TWI BeamAssure™ – electron beam welding quality assurance tool Best practice for nuclear construction industry welding BS 7910:2013 - Assessing flaws in metallic structures Call for papers: 12th International FSW Symposium CII and TWI awareness seminar in composites technology Coatings and surface engineering: addressing the needs of industry Combatting ice and erosion in extreme low temperatures - EIROS Combining Cathodic Protection with Aluminium Coatings CROWN project commended for offshore wind corrosion work Depositing silicon carbide coatings by thermal spraying Digital Twin Technology to monitor offshore assets Digital twin technology wins environmental business award Dr Melissa Riley presents paper at international conference Dr Melissa Riley represents TWI at international conference eLearning package for CSWIP 3.1 Welding Inspector launched Entry is now open for SkillWeld 2016 Extending Aircraft Life Using Cold Spray Technology Fibre delivered laser beam cutting optimisation Friction stir welding – joining the future of industry Friction stir welding and Japanese jewellery Government funds £10 million technology hub in Teesside Has your PCN NDT Certification been voided? TWI Can Help… Her Royal Highness The Princess Royal opens new laboratories at TWI High-pressure hydrogen testing at TWI Ice-repellant coating for aerospace and energy industries Industry benefits of composites microwave processing Innovation Centres at TWI deliver progress for industry INTRAPID produces rapid in-line laser AM inspection systems Introducing the TWI Virtual Academy: studying on your own terms Investigating geothermal coatings for the future of renewable energy Laser scanner improves TWI weld analysis services for Members Lasers for decommissioning: the story so far Lifting the lid on innovation: exploratory projects at TWI Lord Heseltine opens new TWI technology and training centre Meeting reinvigorates Welding Institute's Liverpool branch Mike Russell appointed as TWI Operations Director 'Mind the doors' – New project investigates train door failure Mobile electron beam welds for fabricating large structures ModuLase - combining laser processes for the future of manufacturing MoU between ALFED and TWI enhances collaboration Nanosecond pulsed laser expands opportunities for project work NDT Voiding of PCN certification from NDT International New benefit for TWI Members: free access to Welding Abstracts journal New building to house TWI's structural integrity expertise New centre for Advanced Manufacturing Technologies launched New eBooks added for Professional and Industrial Members New facility for testing the barrier performance of polymers New fracture testing accreditation New Granta Centre manager guarantees premier conferencing New home and new capabilities for TWI in Middlesbrough New manufacturing process supports Hayter's winning position New sensor technology for safe shale gas extraction funded New TWI article breaks down the changes to ISO 15614-1 New ultrasonic testing courses from the TWI Virtual Academy New welding apprenticeship standards receive government approval Novel solution for submersible pumps in oil and gas industry Open Day sparks the start of a new era of research for TWI Pioneering tests being conducted on bespoke TWI rig Plant Inspection training meets need for competent workers Plastics welding experts answer your questions at Aquaculture UK 2014 Progressing graphene as a supercritical fluid barrier Project investigates Powder Metallurgy for astrospace use Purpose-built pressure testing facility opens for business at TWI Purpose-built pressure testing facility to be constructed at TWI Registration opens for TWI BS EN ISO 15614-1 (2017) training RJD Engineering gains Factory Production Control system Certification Rolls-Royce's Martin Boyd discusses the benefits of becoming an IEng Showing expertise in corrosion safety, investigation and assessment Simulating real-world conditions for oil and gas research Skills Development Fund Scheme provides extra TWI courses SkillWeld medallist goes on to take gold at EuroSkills 2016 SOCAR and TWI celebrate new competence training partnership Success for TWI's first blended learning course candidates Successful engineers graduate from EWF/IIW Diploma in Welding 'SUPERSLAB' to meet thicker high-strength steels challenge SurFlow: secure, robust, integrated data transfer through composites Symposium highlights developments in linear friction welding Taking the next step as a CSWIP Welding Inspector Tate Modern use solvent technology for art restoration Teletest business transfers to Eddyfi Technologies The 50-year view of fracture The Transport Systems Catapult and TWI Announce Partnership The Welding Institute Annual Awards and Dinner 2017 The Welding Institute Awards 2018 – Applied Technology Award The Welding Institute promoting career development at NECR exhibition True Stress-True Strain Tensile Testing to Failure TWI and Lloyd's Register launch Fullagar Technologies initiative TWI and Lloyd's Register projects advance take-up of AM TWI celebrates National Women in Engineering Day TWI CEO Christoph Wiesner awarded OBE TWI combines heritage with innovation for the Morgan Motor Company TWI commence 'SubSeaLase' decommissioning project TWI delivers plastics welding training course to Fusion Marine TWI develops essential metallography training to ensure best practice TWI enters research centre agreement with AECC BIAM, China TWI helping UK businesses to 'Access India' TWI helps bring Philips Avent's thermoplastic nebulizer to market TWI helps Engineering College meet industry demand for staff TWI holds successful cold spray technology course TWI hosts graduation ceremony for EWF/IIW Diploma engineers TWI joins 'Integral' nuclear waste project TWI lands NDA innovation award for nuclear decommissioning TWI launches course for advanced digital radiography TWI pioneers 'invisible weld' process TWI Pioneers New Dissimilar Weld for European Space Agency TWI rewards outstanding undergraduate engineering projects TWI signs Memorandum of Understanding with Saudi Aramco TWI Supports Underwater Laser Cutting Project TWI Technology Fellow given Visiting Professorship at LSBU TWI Training success story - Vera Dragoi TWI wins RIBA Awards TWI working to progress composites in the automotive industry TWI's Dr Philippa Moore: A role model for female engineers TWI's Dr Shiladitya Paul called as guest editor of Coatings journal Ultrasonic imaging climbing robot passes field trials Update on CPD for Welding Institute Professional Members Vince Cable India visit promotes UK business successes Welding Institute Annual Awards 2018 Welding Institute's latest Engineering Council registrants Welding the unweldable: TWI friction stir welds ODS steel WindTwin project to revolutionise wind turbine technology Workshop to address dissimilar materials joining challenge World's largest linear friction welded component produced World's most precise weld made at TWI
12 September 2017

TWI is a world-renowned expert in materials and joining innovation, whose independent status has allowed innovations to be shared among a disparate selection of industries and businesses around the globe. One example of this is how Friction Stir Welding (FSW) has been picked up and used by business for a wide range of applications.
Invented in 1991 by Wayne Thomas, FSW is a welding method whereby a (typically) cylindrical shouldered tool with a profiled pin is rotated and inserted between pieces of material to be joined. The welding tool generates frictional heat, causing the materials to soften without melting, and mixes the materials together creating a solid phase bond between them. Friction stir welding has advantages for processing speed, weld strength, integrity, safety, energy efficiency and cost, while also allowing for the joining of materials that may otherwise be difficult to weld.

Particularly suited to automated operation, FSW is an adaptable technique that can be applied to a wide range of situations, including robotic application. With so many advantages, it is no surprise that FSW has been chosen as a solution for hundreds of organisations in a variety of industries around the world.

While TWI has strong connections with some 800 Member companies, the independence of TWI offers a real strength in working with global industry, allowing for partnerships and unbiased solutions and innovation across all aspects of manufacturing, fabrication and whole-life integrity management. As such, TWI has been able to see the benefits of FSW spread to sectors including aerospace, automotive, rail, construction, computing and more.

Here are a few examples of where FSW has been used by business and industry around the world:

Space Launch Vehicles – Friction stir welding has been used in many of the world’s space launch vehicles, including the Space Shuttle main tank built by Lockheed Martin, Boeing USA’s Delta II and Delta IV rockets, the SpaceX Falcon 9, the European Ariane rocket and NASA’s new Orion spacecraft & Space Launch System (SLS). More recently, TWI used friction stir welding to fabricate and deliver a prototype cast titanium propellant tank for the European Space Agency.

Trains – The rail industry was an early adopter of FSW, with Japanese manufacturers Hitachi, KHI and Nippon Sharyo, among others, using the technique for both commuter and express trains for use around the world. The process has been used for Hitachi super-fast trains (Shinkasen) which are able to reach speeds of 320kph and on the new Virgin Azuma trains being assembled at Newton Aycliffe. Friction stir welded trains are also in operation on the UK Channel Tunnel rail link and on the London Underground.

Aerospace – Aerospace has also seen a strong uptake of FSW, which allows parts to be joined without the use of riveting to create lighter components and structures for aircraft. Used by companies including Boeing, Lockheed Martin, BAE systems, and EADS, the technique was also used by Eclipse Aerospace who developed the first friction stir welded jet aircraft, the Eclipse 500 and is used in Embraer’s latest ‘Legacy’ aircraft.

Motor Vehicles – The ability to join lightweight components with FSW has obvious advantages for the motor industry. Used by companies including Audi, Ford and Mazda, FSW has also been used by Tesla for their ground-breaking all-electric sports car. However, FSW has also seen links with more traditional car manufacture, as seen through the application of friction stir welding by Morgan Motors.

London Stadium – Following the success of the London Olympics in 2012 there was a need to convert the seating at the Olympic Stadium (now ‘London Stadium’) to allow a transition from ‘Athletics Mode’ to ‘Football Mode’ ahead of the 2015 Rugby World Cup and before the new tenants, West Ham United, moved in. With time being a factor, FSW was used (alongside TWI’s expertise) to deliver a quota of 3,500 panels for the new extruded aluminium seating decks well ahead of schedule.

Nuclear Waste – FSW is considered so reliable a process that it will be used to encapsulate Swedish and Finnish nuclear waste in giant copper containers designed to last for 100,000 years.

Apple iMac – Apple Inc. endorsed the friction stir welding technique at the launch presentation and in the promotional literature for their 2012 Apple iMac. With a 40% slimmer product, Apple used FSW to join the front and back of the case components since conventional welding techniques would not work with the new design.

You can get more information concerning Friction Stir Welding patents and licences by contacting

For technical information about the Friction Stir Welding process and the latest TWI process innovations, please contact us or visit the Friction Stir Welding section of our website.

Friction Stir Welding
Tesla Electric Car
FSW Aeroplane

For more information please email: