Subscribe to our newsletter to receive the latest news and events from TWI:

Subscribe >
Skip to content

Space Expertise at TWI

TWI has been supporting the exploration of space through delivery of advanced technologies for more than three decades.

We have developed precision welding techniques and coating technologies that meet the extremely exacting demands of the sector, working to minute tolerances. Our technology has landed on the surface of one of Saturn’s moons, sealed the external fuel tank of the Space Shuttle and provided the means by which the two halves of the Orion crew exploration vehicle are joined together.

Visit the Space projects page to read about some of the work we are currently undertaking.

Heritage

TWI’s involvement in the space sector stretches back to the mid-1980s, when we published a paper on investigating the best joining methods for a zero gravity application.

However, it was in the 1990s that our work in the sector gained momentum. In 1996 we developed bonding and coating methods to improve the thermal efficiency of the combustion chambers of the NASA Space Shuttle.

Then the following year our laser technology enabled the construction of precise thermal properties sensors that made up part of the scientific array on the Huygens lander that touched down on Saturn’s moon Titan during the joint ESA/NASA/ASI Cassini–Huygens mission.

In 1999 Boeing used friction stir welding – a technology invented at TWI – to seal the liquid oxygen propellant tanks on the Delta II rocket. Its effectiveness meant it was also selected for the Delta IV design, which has completed 30 successful launches to date.

Friction stir welding was subsequently selected to fabricate the external fuel tank of the Space Shuttle (with NASA and Lockheed Martin), after it produced welds with superior properties to the fusion arc techniques used previously. STS-132, which launched in 2010 and featured friction stir welds on two of its hydrogen tank barrels, was the first shuttle mission to benefit from this technology. The later STS-134 had friction stir welds on all four of its liquid hydrogen fuel tanks, as well as its liquid oxygen barrel.

The method is being used for future projects, too: the forward cone assembly and the aft barrel assembly of the Orion crew exploration vehicle are joined together using friction stir welding. A single weld, 11.3 metres in length, ensures the two components are securely fixed. Orion’s first manned mission is expected to launch in the early 2020s.

Relevant technologies

Several of the advanced technologies worked on at TWI have already been exploited for space applications; many others hold potential:

Standards

TWI is actively involved in committees for a number of standards with implications for the space sector:

  • ECSS-Q-ST-70-15C – Space product assurance – NDE of space vehicles
  • ECSS-Q-ST-70-39C – Space product assurance – Welding of metallic materials for flight hardware
  • AWS D17.1 – Specification for fusion welding for aerospace applications
  • AWS D17.3 – Specification for friction stir welding of aluminium alloys for aerospace applications