Advanced Low Energy Coatings

Alan Taylor
Technology Manager: Sol-gel
TWI

TWI Webinar
17th May 2012
Scope

- TWI
- Industrial context
- Background to surface energy
- Commercial low energy coating market
- Comparison of selected current products
- Next generation low energy coatings
- Conclusions
TWI – An extension to your resources

• Research & Technology organisation
• Membership based
• Effectively owned and run by members
 – TWI Council (appoints Exec Board)
 – Research Board
• Non-profit distributing and Limited by guarantee
TWI supports industry

- **Added value through**
 - Multidisciplinary support for customers projects
 - Supported by on-going, leading edge, research programme
 - Delivery of Innovation

- **Guarantee**
 - Impartial Service
 - Confidentiality
Examples of fouling

Biofouling on a ships hull

Ice build-up on buildings
Examples (2)

Heat exchangers

Aerospace

Heaters

Context

TWI Webinar
17th May 2012

Copyright © TWI Ltd 2012
Examples (3)

Oil & gas

Graffiti

Context
Examples (4)

Power distribution lines
Industrial context

- Fouling of surfaces
 - increases weight
 - causes drag
 - reduces flow
 - contaminates
 - provides sites for corrosion
 - reduces efficiency
 - increases emissions
 - demands cleaning
 - increases maintenance penalty

......COSTS MONEY
Industrial costs of fouling

- Wind turbines
 - Up to 25% reduction in power output
- Marine
 - 40% greater fuel consumption without anti-fouling treatments
- Heat exchangers
 - 0.25% GDP loss in industrialised nations
- Road transport
 - 10% increase in fuel consumption due to increased aerodynamic drag
- Oil & Gas
 - $40M per incident of plugged pipeline
Case Study: Wind Turbines

- Needs
 - Resistance to fouling
 - Ice/insect build up can reduce efficiency
 - Durability to erosion / wear
 - In-mould or post-mould coating application
 - Re-application in-situ
 - No acceptable commercial products available

Context
Power: Wind Turbines

Context

- Fouling can cause significant loss of efficiency
 - 25% reduction in power generation
 - Icing
 - Insect debris

In Yukon (on-shore)

10% of available production lost due to icing (150 kW, 10 m)
Potential Solutions

- Black blades – insufficient solar radiation at high latitudes
- Hot air blowers - €80/kW expensive
- Foil based heaters
 - Goodrich/Kelly/o2VK
- Low energy coatings
 - Insufficient anti-icing capability
 - Insufficient erosion durability
Background to surface energy

• Fouling occurs due to the build up of unwanted solid on a surface
 – Precipitation
 – Solidification
 – Biofouling

• Surface/liquid/ foulant compatibility

• Good interaction promotes good compatibility
• Poor wetting reduces compatibility and adhesion
• Low surface energy gives rise to poor wetting
Contact Angle

\[Y_S = Y_L \cdot \cos \theta + Y_{SL} \]

Young Equation

\[\cos \theta_w = r\cos \theta_c \]

Wenzel Equation

Liquid-solid interactions
- Polarity
- Electrostatic forces
- Hydrogen bonding

Contact angle is used as the primary measure of performance
Wetting behaviour

- **Non-wetting** → **Wetting**

- **Surface energy**

- **θ**

- **Puddle Depth**
Definitions

• Superhydrophilic $\theta < 35^\circ$

• Hydrophobic $\theta > 90^\circ$

• Superhydrophobic $\theta > 150^\circ$
Chemical considerations

<table>
<thead>
<tr>
<th>Substrate</th>
<th>γ_c (mN/m)</th>
<th>WCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptafluorodecyltrichlorosilane</td>
<td>12.0</td>
<td>120°</td>
</tr>
<tr>
<td>Poly(tetrafluoroethylene)</td>
<td>18.5</td>
<td>115°</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>31.0</td>
<td>108°</td>
</tr>
<tr>
<td>Aluminium (3003 H14)</td>
<td>49</td>
<td>60°</td>
</tr>
<tr>
<td>Steel (A1008)</td>
<td>60</td>
<td>53°</td>
</tr>
<tr>
<td>Glass (dry)</td>
<td>78</td>
<td><15°</td>
</tr>
<tr>
<td>Tin oxide</td>
<td>111</td>
<td><5°</td>
</tr>
</tbody>
</table>
Commercial low energy coatings

- Market size at present $1–3Bn

- Based on chemical repulsion
 - maximum WCA 115° - 120°

- Dominant technological approaches
 - Fluorinated polymers - Teflon®
 - Fluorinated sulphonates - Scotchgard
 - Siloxanes/silicones - Silres®

- Future technical offerings
 - Silazanes - Tutoprom®
 - Inorganic-organic hybrids - Interlotus
Key products and companies

- BASF Hydrozo
- Wacker Silres
- DuPont Teflon
- 3M Scotchgard
- Solexis Hyflon
- AZ-EM Tuto-Prom
- Interlotus
- AcuIon
- Asahi Guard ESERIES
- Si-O

Fluoropolymer

Si-O Hybrid

Market
Characteristics of low energy coatings

Beneficial Properties
- Good adhesion
- Chemical/moisture resistance
- Corrosion/stain resistance
- Dirt/soil resistance
- Stability
- Easy to clean
- Enhanced release properties
- Grease/oil resistance
- Heat resistance
- Low surface energy
- UV resistance

Additional Attributes
- Anti-fog
- Anti-microbial
- Anti-static
- Fire retardancy
- Improved flow, gloss, clarity, etc.
- Low refractive index
- Non-stick characteristics
- Smoother finishes
- Vapor permeability

Market
<table>
<thead>
<tr>
<th>Feature</th>
<th>Silane / Siloxane</th>
<th>Fluoropolymers</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability</td>
<td>Short/medium</td>
<td>Medium/long</td>
<td>Medium/long</td>
</tr>
<tr>
<td>Chemical resistance</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Temperature resistance</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Solvent based</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Gas permeable</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Application considerations</td>
<td>Simple</td>
<td>Difficult</td>
<td>Simple</td>
</tr>
<tr>
<td>Cost</td>
<td>Med/high</td>
<td>High</td>
<td>Med/high</td>
</tr>
</tbody>
</table>
Overview of current products

• Fluoro-polymers
 – Dominant but are fundamentally limited
 – Legislation raises questions over long term viability
 – They are thermoplastic and therefore soft and easily abraded.

• Polysiloxanes
 – Soft and hydrophobic
 – Or hard, brittle and thickness sensitive with little hydrophobic character
Overview of current products

• Hybrids:
 – Currently solvent based
 – Thickness sensitive
 – Lack mechanical robustness
 – Niche applications
 – Hydrophobic and super-hydrophobic products available
 – Emergent technology
 – Related to high performance hard-coat technology
 – Potential for chemical manipulation to integrate with existing coatings
 – Low TRL but aimed at addressing limitations of conventional approaches
Key players and existing products

<table>
<thead>
<tr>
<th>Product/Description</th>
<th>Teflon</th>
<th>Intersleek</th>
<th>Silres</th>
<th>TutoProm</th>
<th>Silicone Hardcoats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced by</td>
<td>DuPont</td>
<td>AkzoNobel Corporate</td>
<td>Wacker Silicones</td>
<td>Clariant / AZ-EM</td>
<td>Momentive Performance Materials</td>
</tr>
<tr>
<td>Company Sizes (2009)</td>
<td>€21,167m</td>
<td>€13,893m</td>
<td>€3,719m</td>
<td>€4,930m</td>
<td>€1,689m</td>
</tr>
<tr>
<td>Chemical Family</td>
<td>Fluorinated polymers</td>
<td>Fluorinated polymers</td>
<td>Silicones</td>
<td>Silizanes</td>
<td>Silicones</td>
</tr>
</tbody>
</table>
Product comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Teflon AF 900</th>
<th>Intersleek 900</th>
<th>Silres SY300</th>
<th>TutoProm</th>
<th>Silicone Hardcoats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble in selected solvents</td>
<td>Biocide-free</td>
<td>Durable and flexible</td>
<td>Solvent-free</td>
<td>Protective effect for painted surfaces</td>
<td>Resistance to UV radiation for coloured polycarbonate, -</td>
</tr>
<tr>
<td>High gas permeability</td>
<td>Good resistance to mechanical damage</td>
<td>High resistance to aggressive atmospheric effects,</td>
<td>Anti-graffiti</td>
<td>Easy-to-clean</td>
<td>Resistance to microcracking,</td>
</tr>
<tr>
<td>High compressibility</td>
<td>Good colour retention</td>
<td>Good gloss retention</td>
<td>Colour fastness</td>
<td>Resistance to abrasion</td>
<td>Mar and thermal resistance</td>
</tr>
<tr>
<td>High creep resistance</td>
<td>Reduces the cost of vessels maintenance</td>
<td></td>
<td></td>
<td></td>
<td>Not hydrophobic</td>
</tr>
<tr>
<td>Low thermal conductivity</td>
<td>Antifouling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low dielectric constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Market

TWI Webinar
17th May 2012
Comparative analysis (SWOT)

<table>
<thead>
<tr>
<th></th>
<th>Teflon AF</th>
<th>Intersleek 900</th>
<th>Silres SY300</th>
<th>TutoProm</th>
<th>Silicone Hardcoats</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Recognised brand
Well established supply chain
International presence</td>
<td>industry benchmark for quality
Sustainable growth
Biocide-free
Durability
Energy-efficiency</td>
<td>Ease of application
Good chemical resistance
Low cost</td>
<td>Leader of protective coating for anti-vandalism</td>
<td>Long-term protection
Versatile use
UV protection</td>
</tr>
<tr>
<td>W</td>
<td>Unable to focus on niche market
Easily damaged</td>
<td>highly specific industrial use</td>
<td>Short-term coating longevity</td>
<td>Limited applicability
Thickness
Solvent based</td>
<td>Solvent based
Slow cure</td>
</tr>
<tr>
<td>O</td>
<td>Emerging markets
(i.e. Asia Pacific and EE)
Environmentally friendly</td>
<td>Production cost reduction</td>
<td>Building environmental control</td>
<td>Expand within emerging markets
New applications</td>
<td>Renewable energy market
New substrates, e.g. composites</td>
</tr>
<tr>
<td>T</td>
<td>Availability of close substitutes
POP related health concerns</td>
<td>New entrants with lower prices</td>
<td>New entrants with lower costs</td>
<td>New additives integrated into existing paints</td>
<td>Legislation
Rapid cure products</td>
</tr>
</tbody>
</table>

TWI Webinar
17th May 2012
Supply Chain

Raw materials
Building blocks
Formulators
Applicator
End user

Dow Corning • Evonik • Wacker • Shin-Etsu • Sartomer
• Momentive • Gelest
• Air Products • BASF • Bayer MS • Cytec • Degussa • Dow • Huntsman • Momentive • etc
DuPont
BASF
PPG
Bayer MS
Clariant
Akzo
Nobel
Cytec
e tc
Amtico
Carclo
Bombardier
GKN
Lockheed
GE
e tc
Mercedes
Airbus
Nokia
Siemens
GKN
Boeing
Caterpillar
e tc

Market

TWI Webinar
17th May 2012

Copyright © TWI Ltd 2012
Market Participants In Supply Chain

Additives
- Raw Materials & Building blocks: Evonik, Wacker, BASF, Momentive

Formulators
- DuPont, Akzo-Nobel, BASF, 3M, Evonik, Wacker, Whitford

Applicators
- Sinclair Optics, GKN

End Users
- GE, Lockheed
Case study 2: Fluoropolymer company

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dominant technology</td>
<td>- Asia Pacific & Eastern Europe</td>
</tr>
<tr>
<td>- Diverse product range</td>
<td>- Environmentally friendly</td>
</tr>
<tr>
<td>- Teflon brand recognition</td>
<td></td>
</tr>
<tr>
<td>- Well-established supply chain</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weaknesses</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Focused on fluoropolymers</td>
<td>- New, high-tech coating companies</td>
</tr>
<tr>
<td>- PFOA/PFOS hazards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Durability</td>
</tr>
</tbody>
</table>

Market
Case study 3: Hybrid coating company

Strengths
- Brand recognition
- Transportation sector contracts (Deutsche Bahn)
- Ambient temperature application

Weaknesses
- Complex manufacturing process
- Single technology focus

Opportunities
- Anti-Graffiti → Niche market
- Emerging polysilazanes (est. $93m USD)

Threats
- Direct competition with alternative products e.g.
 - Evonik – Protectosil
 - 3M – anti-Graffiti window screen

Market

TWI Webinar
17th May 2012
Mid sized fluoropolymer coating company
- PFOA and PTFE free
- Sol-gel based
- Consumer product
- Marks the transition to new synthesis technologies
Market drivers

- Environmental legislation
 - VOC (Volatile organic compounds 2004/41/CE)
 - POP (Persistent organic pollutants – Stockholm convention)
 - Carbon emissions reduction
 - Urban water run off – EPA

- Price increases for energy
 - Operational efficiency
 - Productivity
 - Maintenance
Comparison of inorganic-organic hybrids

- A range of products have been tested
- All were solvent based, easy to deposit and readily cured (ambient)
- Water contact angle typically between 74° and 104°
Background chemistry

Silica network formation via sol-gel reactions

HYDROLYSIS:

\[
\text{RO} + \text{Si-OR} + \text{HOH} \rightarrow \text{H_2O} + \text{Si-OR} + \text{RO}
\]

CONDENSATION:

\[
\text{Si(OH)} + \text{H_2O} \rightarrow \text{Si-OR-OR} + \text{OH}_2
\]

Comparison

TWI Webinar
17th May 2012

Copyright © TWI Ltd 2012
Sol-gel: Structural evolution

Where \(\text{Si(OR)}_x \text{(OH)}_y \text{(OSi)}_z \) is represented by \((X,Y,Z)\)

Comparison
Comparative study

- Deposit and cure on aluminium substrates
- Use water contact angle as the primary measure of performance
- Abrade and measure contact angle as a function of degree of abrasion
- Four silane treatments
- Four commercial products
- Two silica-silane hybrids
Comparison of aluminium coated samples

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Contact Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Monolayer silanes</td>
</tr>
<tr>
<td>5-11</td>
<td>Commercial products</td>
</tr>
<tr>
<td>12-13</td>
<td>Silica-silane hybrid</td>
</tr>
</tbody>
</table>
Abrasion resistance on aluminium

Change in water contact angle after 500 double rubs with lint free cloth - aluminium substrate

Samples 1-4 Monolayer silanes
Samples 5-11 Commercial products
Sample 12-13 Silica-silane hybrid
Abrasion resistance on aluminium

Change in water contact angle after 500 double rubs with 0000 wire wool - aluminium substrate

Samples 1-4 Monolayer silanes
Samples 5-11 Commercial products
Sample 12-13 Silica-silane hybrid
Wear damage after 10 double rubs

Comparison

Silane

Commercial 1

Commercial 2

Commercial 3

Commercial 4

Hybrid

TWI Webinar
17th May 2012

Copyright © TWI Ltd 2012
Conclusion of comparison study

• A novel test routine which compares the hydrophobic behaviour after abrasion has been developed and established.

• Hydrophobic performance is present in many coatings even after considerable damage to the coating is evident.

• Good retention of water repellence can be achieved after considerable abrasion.

• Silane only treatments give the lowest level of performance

• Silica-silane hybrids are comparable with the class leading commercial products
Future trends for coatings

- Reduced VOCs
- Improved shelf-life
- Reduced processing time/cost
- Reduced harmful chemicals
- Improved mechanical performance
- Improved corrosion protection
- Enhanced temperature capability
- Improved functionality
- Improved durability
Barriers to industrial adoption

- **Application**
 - Fluoropolymers can be difficult to apply

- **Abrasion resistance**
 - All current products are relatively soft

- **High anti-fouling performance**
 - All current products are broadly hydrophobic but do not provide anti-ice, or significant oleophobic characteristics on non-porous substrates

- **Cost**
 - All current products are viewed as relatively expensive
Next generation coatings

- Closer integration of hydrophobic agent and film-forming matrix
- Use of hydrocarbons rather than fluorinated products
- Improved abrasion resistance by increasing cross-link density/inorganic content
- Low or zero solvent content
- Dual/multifunctional roughness to increase contact angle and allow coatings with anti-icing or oleophobic properties
Superhydrophobic surfaces

Image courtesy of Lotus Leaf Coatings
Wetting states – the effect of roughness

(a) Wenzel, (b) Cassie-Baxter and (c) combined model

N. Kiyassov. “High performance low energy coatings” MPhil Dissertation Cambridge University, 2009
Designing new materials

- Properties
- Structure
- Composition

Future

Vitolane® Silsesquioxanes

TWI Webinar
17th May 2012
Conclusions

• There are a range of low energy coatings available
• Selection depends both on functional performance and availability of cost effective solutions
• Replacement of conventional fluorinated and silicone technologies has been slow, this may be due to:
 – Performance/expectation mismatch
 – Cost
 – Availability
 – Solvent content
• Legislation is driving further development
 – Removal of fluorine
 – Increasing costs of inefficient operation
Thank you!

Any questions?

alan.taylor@twi.co.uk