

How TWI can help SMEs (and the rest of industry)

May 2015

Materials Joining and Engineering Technologies

TWI Overview

- Coatings R&D (TRL1-4):
 - Developing and/or optimising new coatings
- Applications and pre-production development (TRL4-6):
 - Solving the practical challenges of transferring a new coating to real components
- Consultancy:
 - Coating process / materials selection; troubleshooting and failure investigations
- Coating characterisation and testing:
 - Material analysis
 - Wear, corrosion and adhesion testing
 - Development of specialist test methods
 - Includes evaluation of PVD, CVD, electroplating, paint etc
- Training and technology transfer

Independent Coatings Selection

Needs and specifications

 Defined by the customer with TWI input.

Substrate, properties, performance ...

Selection & recommendation

Identification of coating options (material and process) for the application.

Supply chain identification.

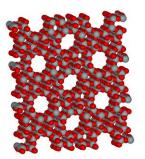
Evaluation

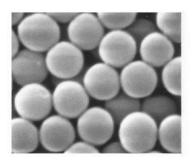
Deposition and testing.
Validation of material and process.

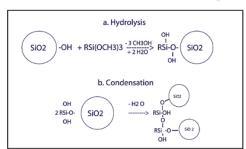
- Commercially available coatings
- Emerging technologies

Technological Approach

Enabling technologies for functional coatings

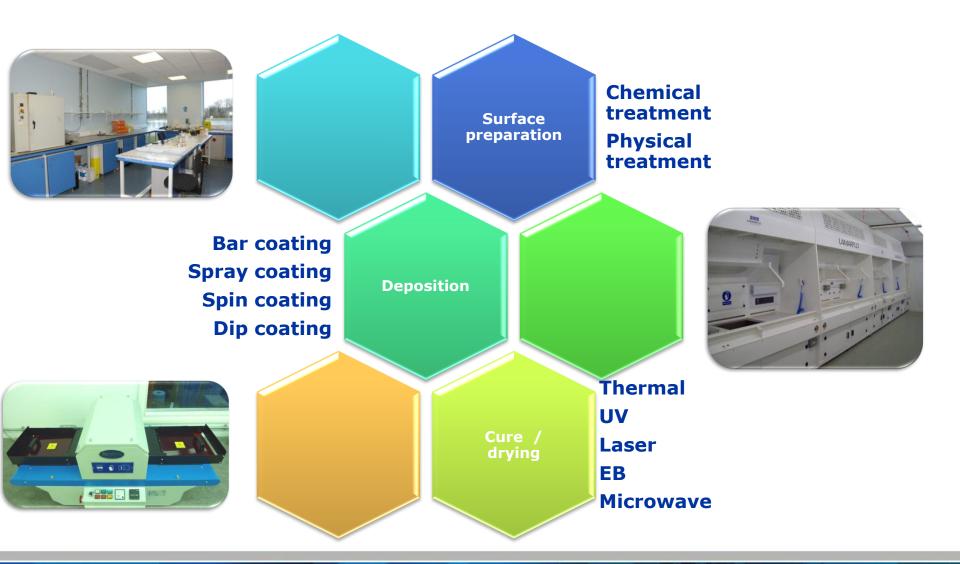






Structure

Composition

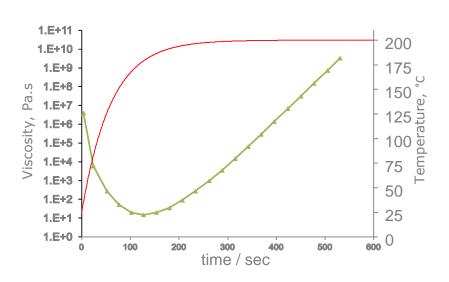


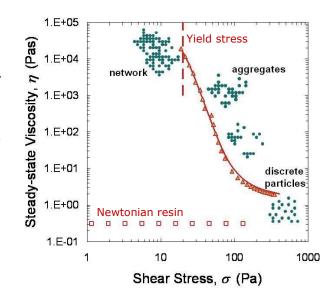
Coating Process Development

Testing and Evaluation

Analysis Capability

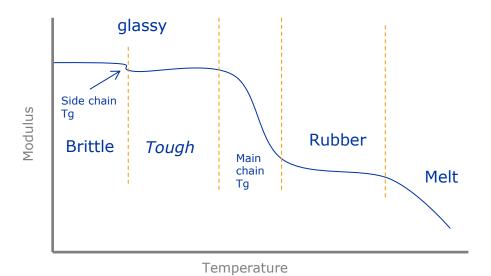
- Optical microscopy
- Nano-indentation
- Dynamic Mechanical Analysis
- TGA/DSC
- Rheometry
- FTIR
- UV-Vis spectrometry
- Adhesion
- Tensile / compression testing
- Friction
- Wear / abrasion resistance
- Haze and gloss measurement
- Impact performance
- Density





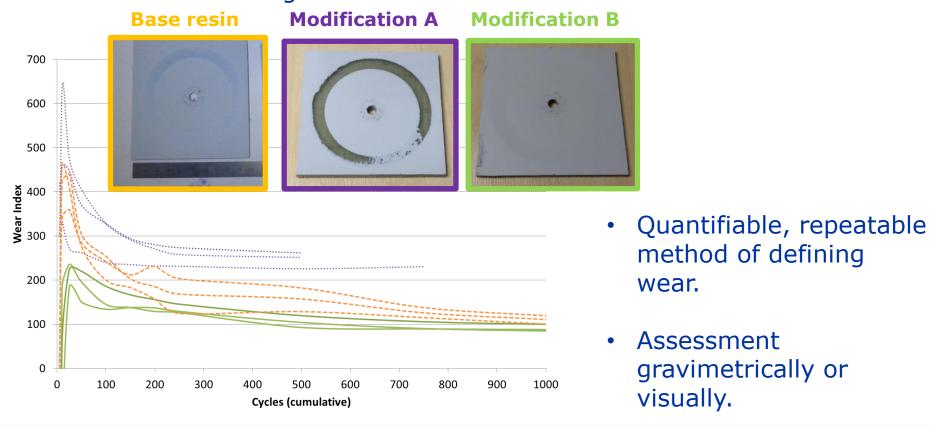
Flow behaviour and cure

- Coating systems tend to be filled, ie a formulation of resins, pigments, actives, extenders etc
- Rheology of the liquid system generates understanding of:
 - Flow behaviour after deposition
 - Curing behaviour
 - Coating life


- Rheology can also be used to understand how materials behave with temperature to develop:
 - Assessment of aging
 - Lifing predictions
 - Failure assessment

Mechanical Analysis DMTA- Dynamic Mechanical Thermal Analysis

- Analysis of curing process and resulting structure
- Able to measure modulus & Tg of film samples, sub-ambient to 400°C



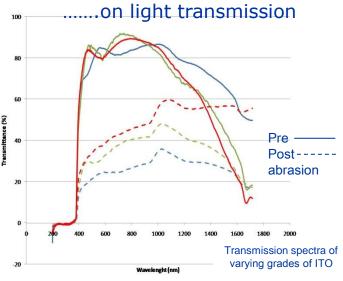
- Provides an understanding of the brittle/ductile nature of a material
- Material selection for different environments
- Failure analysis

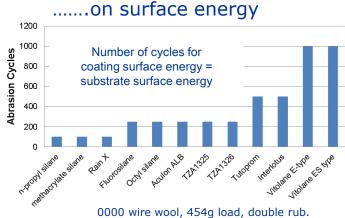
Mechanical Performance - Abrasion

Understanding how a surface wears can lead to the selection of the most appropriate system or development of more abrasion resistant coatings

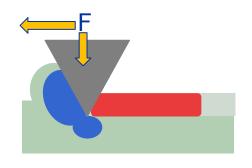
Alternative abrasion measurements

 Abrasion measurement can be adapted to quantify the required parameters


Visual / gloss reduction

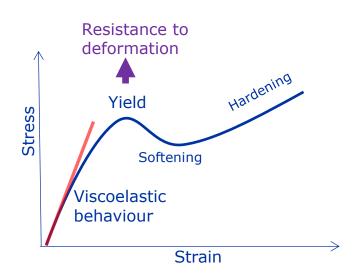


Abraded with 0000 wire wool, 100, 250 and 500 cycles

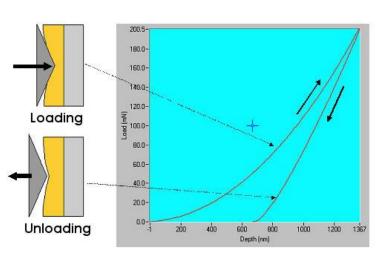


Surface energy measured by contact angle.

Mechanical Performance - Scratch Resistance


Understanding the compressive, tensile and frictional properties enables development of coatings with improved toughness and scratch resistance.

Compression Tension



A material can fail in both compressive and tensile modes within a single scratch.

Mechanical Properties - Nanoindentation

- Mapping of surface properties
 - Hardness and elastic modulus
- Profiling of properties with respect to depth
 - Examining the effects of a surface modification process
- Mechanical property measurement of individual phases or grains
 - Creep analysis
 - Nano-scratch and wear testing

The instrument can be adapted to:

- Test under heated and cooled conditions (RT to 550°C)
- Testing in liquid

Corrosion testing

Corrosion testing:

- ASTM B117 salt spray
- Bespoke testing adapted from bulk material standards
 - ASTM G71 galvanic corrosion,
 - G48 pitting & crevice corrosion,
 - . ASTM D6943 chemical immersion,
 - ISO 15156-3 sulphide SCC, ASTM F519 H2 re-embrittlement,
 - . CI- SCC drop evaporation.

Coefficient of Friction

Basic ranking of materials

Extending capabilities to

Bruker Tribolab

Friction / Load sensing		
low range	5 to 500mN	
Resolution	50uN	
High range	10 to 1000N	
Resolution	50mN	

0.1			
0.2			
Coefficient of Friction			
0.5 —			
5 0.6			
0.7			
0.8		- ASTM: D 18	394
0.9			

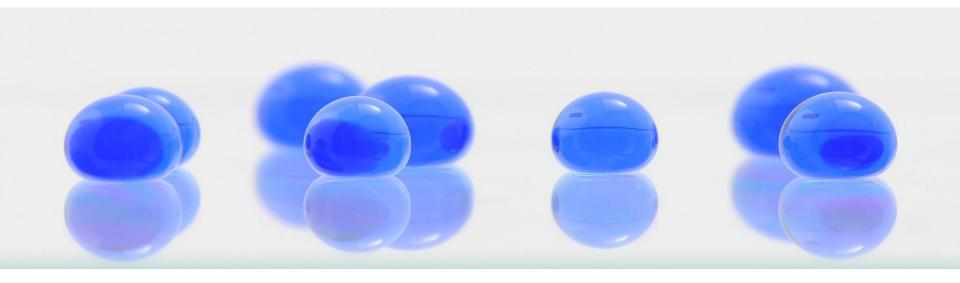
Wear	Rotary, Linear, Reciprocating, Abrasive, Fretting, Galling, Seizure
Friction	Static, Dynamic, Stick-slip
Lubricity	Hydrodynamic, Mixed, Boundary
Environmental	Temperature, Humidity, Vacuum, Gases, Corrosive Atmospheres
Scratch	Adhesion, Delamination, Hardness
Indentation	Young's Modulus, Storage Modulus, Hardness
Strain	Multi-axis, Tension, Compression, Torsion, Elasticity, Plasticity, Creep

Direct Support

- Access to equipment and expert analysis capability
- Materials and Process Development available to Members
- Consultancy and Troubleshooting/Failure
 Investigation available to Members and through regional projects
- All on a confidential, independent, impartial basis

Collaborative R&D Activity

- Identifying industry needs
- Correlating needs to funding calls
- Creating consortia
- Writing and submitting proposals
- Project administration and technical delivery



THANK YOU

If you have any questions please don't hesitate to contact us:

Colin.graves@twi.co.uk