Good welding practice Stainless Steels

Glenn Allen Welding Engineer TWI North

Stainless Steels

- Four basic types of stainless steels,
 - Austenitic, most common
 - Ferritic
 - Martensitic
 - Duplex, main use oil & gas
- with different properties and hence different applications:
- All are weldable but with different problems.

Typical Stainless applications

- Austenitic process plants, cryogenics, medium corrosive applications, used over wide temperature range
- Ferritic low cost variant, bulk handling equipment, road/rail vehicles, not for elevated temperatures (<300°C)
- Martensitic- high strength/high hardness, aerospace, medical, petrochemical
- Duplex- oil & gas extraction/production, not for elevated temperatures (<300°C)

Arc Welding Processes

- ARC WELDING
 - MANUAL METALLIC ARC
 - TUNGSTEN ARC INERT GAS SHIELDED
 - METALLIC ARC ACTIVE GAS SHIELDED
 - FLUX CORED ARC WELDING
 - SUBMERGED ARC WELDING
 - PLASMA ARC WELDING
 - ELECTRON BEAM WELDING
 - LASER BEAM WELDING
- SOLID PHASE WELDING
 - FRICTION WELDING
 - FRICTION STIR WELDING

MMA (SMAW) TIG (GTAW) MAG (GMAW) FCAW SAW PAW EBW LBW

FW FSW

- Welding problems
 - Weld metal solidification cracking
 - More likely in fully austenitic structures.
 - Mainly Sulphur & Phophorus.
 - The presence of 5-10% ferrite in the microstructure is extremely beneficial,
 - The beneficial effect of ferrite has been attributed largely to its higher solubility of harmful impurities.

– Welding Consumables

- usually matching filler metals
- The choice of filler material composition is crucial e.g. when welding Type 304 stainless steel, a Type 308 filler material which has a slightly different alloy content, is used.
- Weld metal composition can be predicted from the Schaeffler diagram

Welding problems

- Welding Consumables

- The choice of filler material composition is crucial.
- Filler choice depends on required mechanical and corrosion properties – often higher alloy (nominally matching)
- Autogenous welds are possible, but usually welded with matching filler or slightly overalloyed.
- e.g. when welding Type 304 stainless steel, a Type 308 filler material is used, which has a higher alloy content, to promote some ferrite.
- Weld metal composition can be predicted from the Schaeffler diagram

Schaeffler diagram

Stainless steel composition predicts whether solidification is initially ferrite (δ), austenite (γ), or a mixture (δ + γ)

Austenite stabilisers, Ni_{eq}

 Carbon, Nickel, Nitrogen, Manganese, Copper Ferrite stabilisers, Crea

 Chromium, Molybdenum, Tungsten, Niobium, Silicon

Modifications to this diagram include DeLong diagram and WRC diagram

Schaeffler diagram predicts weld metal phases

Weld microstructure

• Weld bead

Delta ferrite (dark regions)

- Welding problems
 - Distortion
 - Low Thermal conductivity
 - 15 W/m°C compared to 47 W/m°C for Csteel
 - High Coefficient of Expansion
 - 16 µm/m°C compared to 10 µm/m°C for Csteel
 - Minimise
 - Limit weld volume
 - Accurate fit up: avoid wide gaps and misaligned edges
 - Maintain low interpass temperature (~150°C max).
 - Avoid high heat input techniques i.e. large weave, high welding current, slow travel speed

- Other issues:
 - Weld cold:
 - No preheat required, as cold cracking not an issue.
 - » Austenite solubility of H2 is 8x that of Ferrite
 - » Rutile electrodes are acceptable
 - Avoid Post-weld heat treatment,
 - not normally required
 - risk of precipitation and sensitisation, 550 800°C
 - Avoid non-removable backing rings
 - risk of crevice corrosion

- Sensitive to grain growth
 - loss of toughness, embrittlement
 - limited to 250°C service temperature
 - can lead to cracking in weld or HAZ of highly restrained joints and thick section material.
- Hydrogen cracking
 - Can suffer cold cracking similar to Carbon Steels.
- Filler metals:
 - matching, austenitic or nickel alloy

- Usually parent materials are thin plates or tubes.
- Austenitic Fillers
 - When welding thin section material, (< 6mm) use an austenitic filler and no special precautions are necessary.
 - In thicker material, if using an austenitic filler to produce a tougher weld metal, it is necessary to employ a low heat input and max interpass of 150 °C to minimise the width of the grain coarsened zone.
- Nickel Fillers
 - Used if PWHT required

Matching Fillers

 If welded with matching filler, preheat and PWHT (due to hard martensitic formation). Preheating will reduce the HAZ cooling rate, maintain the weld metal above the ductile-brittle transition temperature and may reduce residual stresses.
Preheat temperature should be within the range 50-250 °C depending on material composition.

Martensitic stainless steels

Martensitic stainless steels

- Welding Problems
 - Hydrogen cracking
 - Normally matching consumables.
 - High hardness in the HAZ makes this type of stainless steel very prone to hydrogen cracking above >3mm. The risk of cracking increasing with the carbon content.
 - Take precautions to minimise hydrogen

Martensitic stainless steels

- Precautions which must be taken to minimise the risk, include:
 - using low hydrogen processes
 - preheating to around 200 to 300 deg.C.
 - maintaining the recommended minimum interpass temperature.
 - Allow cooling to ambient to ensure complete transformation to martensite prior to PWHT
 - carrying out post-weld heat treatment, e.g. at 650-750 deg.C.

Duplex stainless steels

Duplex stainless steels

- Preheat is not normally required.
- Heat input and the maximum interpass temperature must be controlled.
 - Too high cooling rate produces high Ferrite
 - Too slow cooling rate precipitates third phases
- Choice of filler
 - critical to produce a weld metal structure with a ferriteaustenite balance to match the parent metal.
 - To compensate for nitrogen loss, the filler may be overalloyed with nitrogen or the shielding gas itself may contain a small amount of nitrogen.

Complex !

Welding Stainless steels to Carbon/Low alloy steels

Stainless to Low alloy steels

- Austenitic Stainless
- Welding Problems
 - Dilution of weld metal from the Low alloy base material .
 - possible formation of hard brittle structures,
 - use an overalloyed austenitic stainless filler material type 309 (24% Cr 12% Ni), weld deposit will be ductile-can tolerate high dilution from carbon steel/low alloy steel
 - pre-heat is not usually required
 - Upto 15% ferrite to avoid hot cracking
 - Not suitable for PWHT or above 400°C due sigma phase

Stainless to Low alloy steels

- Austenitic Stainless
- Welding Problems
 - Alternative Ni-based consumables (ENiCrFe-2 and ENiCrFe-3, Alloy 600 type)
 - PWHT still a problem for the SS
 - Recommended fabrication sequence
 - 1. Butter the ferritic steel with Ni-base consumables
 - 2. Apply the PWHT to ferritic steel+buttering
 - 3. Complete the joint with Ni-based consumables

Stainless to Low alloy steels

- OTHER STAINLESS GRADES
 - Use above consumables or consumables matching stainless grade, with same precautions, dependent on the application.

- A steel that contains at least 10.5% chromium.
- Forms a Cr oxide coherent passive layer (protective film), which is approx 10 micron thick.
- This is normally self repairing in air.

- If damaged with non corrosion resistant material.
- Passive layer is prevented from reforming
- This can then lead to corrosion of stainless in a corrosive enviroment.

- Prevent carry over of particulate contamination
 - consider forming processes
 - Rolls, pressbrakes and guillotines
 - use tools dedicated for use on stainless steel
 - use INOX grinding discs, SS wire brushes
 - avoid contact with steel chains, forks, benches and hammers
 - avoid walking on stainless steel material
- Other considerations
 - Use chloride free marker pens, tapes etc

- Fabrication.
 - Clean joint and adjacent parent material to remove dirt, grease, oil, paint and sources of moisture
 - temporary attachments materials should be compatible with the parent material
 - Arc strikes can act as initiation points for pitting corrosion and cracks
 - Appropriate post-weld cleaning to obtain good corrosion resistance, remove spatter, slag, arc strikes, oxides (discolouration) around weld.
 - Pickle and passivate if required to restore protection.