bar, building structures, building components, building support systems, blanks, building interiors, balustrading, bain maries, bakery ec banding, bright ground bar, ball valves, blooms, barriers, bar tops, butchers fittings, but welded tube littings, brackets, bold the bead b

ièd

BSSA

corrosion teBiriti,sh Stainless Steel Association lad

ns, creep resistance, engineering

INTRODUCTION TO STAINLESS STEEL

M. O. Lewus Technical Advisor, BSSA

TWI Technology Centre, Riverside Park, Middlesborough 18/06/15

SUMMARY

- The BSSA
 - What we do !
- What makes stainless steel stainless: 'the passive layer'
- 5 Types of Stainless Steel
 - Metallurgy
 - Structure
 - Mechanical and physical properties
 - Applications
- Structure, composition and property factors affecting weldability

BSSA: WHAT WE DO

HELP & ADVICE	The Stainless Steel Advisory Service (SSAS) Website: <u>www.bssa.org.uk</u> (>1.5 million hpy) To date, over 42,000 technical enquires answered
TRAINING & EDUCATION	Starter and Advanced Stainless Steel Courses Fabrication Seminars Bespoke in-company Courses Open seminars (e.g. CE Marking), eNewsletters, Information campaigns
EVENTS	Forums Conferences Networking social functions
MARKET DEVELOPMENT	CPDs for architects

BSSA: TRAINING + EDUCATION

2 Current Courses:

1. Intro. to Stainless Steel

2. Mechanical Testing Techniques

BSSA: CPDs

- RIBA Approved CPDs
 - **1. Stainless Steel for Architects**
 - 2. Specifying Stainless Steel for Architectural Applications

3. Designing Building Exteriors in Stainless Steel

4. Stainless Steel in Swimming Pools

BSSA: TECHNICAL ENQUIRIES

Snap-shot of 2015

>75% concerned with standard grades – technical enquiries from: manufacturers (25%),
Stockholders (21%),
Fabricators (13%), End users (8%)

- Manufacturer
- Stockholder
- Fabricator
- End User/Operator
- Engineer
- Consulting Engineer
- Architect
- Specifier/Designer
- Private
- Contractor(Building)
- Buyer/Sales Agent
- Researcher
- ZOthers
- Govnt.Local/Ministry
- Quantity Surveyor

<u>Technical Issues</u>: Material selection Specification/grade Supply of materials Corrosion Surface treatment

STAINLESS STEEL

DEFINITION OF STAINLESS STEEL & THE PASSIVE LAYER

STAINLESS STEEL

• What is a stainless steel ?

 An increasing wt.% of chromium dramatically reduces atmospheric corrosion until its content is sufficient for stainless steel

 Stainless steels are iron alloys containing a minimum of 10.5wt. % chromium (and ≤ 1.2wt.% C) [BSEN 10088/1]

STAINLESS STEEL: THE PASSIVE LAYER (1)

• What makes stainless steel corrosion resistant ?

STAINLESS STEEL: THE PASSIVE LAYER (2)

- Metal + air \rightarrow metal oxide
- Different types of oxide
 - Iron oxide on carbon steel: porous allows further oxidation
 - Chromium oxide on stainless steel: not porous, is stable and usually prevents further oxidation
- Passive layer is very thin 1/10000 the thickness of human hair ranges from 2/3 to 10's of atomic layers thick
- Points to Note!
 - Passivation is accelerated by oxidising acids e.g. citric or nitric
 - Welding can adversely effect the passive film depletes chromium from surface
 - Chlorides & reducing acids adversely effect the passive layer

No stainless steel resists all environments

5 TYPES OF STAINLESS STEEL

- Austenitic: most common, ~70% of total usage
- Ferritic: ~20%
- Ferritic-Austenitic (duplex): 3%
- Martensitic: ~5%
- Precipitation Hardened (PH): can be fully austenitic, semi austenitic or martensitic, ~2%

Dr Mike Lewus, BSSA Technical Advisor

AUSTENITIC STAINLESS STEELS

• A closer look

No	Advantages	Disadvantages	Applications
1	Easy to Produce	Subject to price swings – Ni cost variable	Sinks, saucepans, cutlery, cladding, handrails,
2	Formable – stretch forming & deep draw	High alloy grades very expensive	catering surfaces, chemical, pharmaceutical, food processing, oil and
3	Weldable thick sections	Not heat treatable in bulk	gas, street furniture, hospital equipment. MRI
4	Low temperature toughness	Low thermal conductivity	scanners, building products e.g. wallties,
5	Oxidation resistance	Difficult to machine	furnaces, electrical
6	High alloy grades give high corrosion resistance	High thermal expansion leads to distortion	energy, cryogenic storage vessels, springs, rail
7	Strengthened by cold work		exhaust systems, process piping, medical devices,
9	Non-magnetic		water tubing, nuclear processing, yacht trim

FERRITIC STAINLESS STEELS

• A closer look

	Advantages	Disadvantages	Applications
1	Formable – deep drawing	Not weldable in thick sections	Washing machine drums, automotive exhaust
2	Oxidation resistance	Not as stretch formable as austenitic grades	microwave oven linings, cheaper cutlery, hot water tanks, internal decorative
3	High alloy grades giving high level of corrosion resistance	Not as easy to produce	tubing, automotive trim, induction heating saucepans, window hinges, ventilation ducting, lift
4	Price stability – low Ni	Not heat-treatable	panels, electrical
5	Similar thermal props. to carbon steels	Poor low temp. toughness	enclosures, coal wagons, initial food handling e.g. sugar beet, containers, bus
6	Resistant to stress corrosion cracking		chassis

MARTENSITIC STAINLESS STEELS

•	A closer look		
	Advantages	Disadvantages	Applications
1	Heat treatment gives wide range of props.	Poor weldability in most grades (low carbon grades OK)	Razor strip
2	High strength with moderate toughness at RT	Poor low temperature toughness	high quality knife blades, scalpels,
3	Good high temperature strength	Process route , more complex than austenitic	shafts, hydraulic rams, wear resistant
4	Good for blades	Limited corrosion resistance	plate,
5	Price stability – low Ni		oil and gas
6	Similar thermal props. to carbon steels		

DUPLEX STAINLESS STEELS

•	A Closer look		
No	Advantages	Disadvantages	Applications
1	2 x strength of austenitics, hence thickness and wt. reduction	Complex metallurgy, difficult processing to achieve phase balance	Chemical
2	Moderate low temperature toughness	More care required in welding	subsea oil and gas,
3	Weldable in thick sections	Higher power needed for forming	structural applications,
4	Resistance to Stress Corrosion Cracking	More difficult to machine than austenitics (one exception)	bridges, hot water tanks, pulp and paper,
5	Better price stability than austenitic, particularly lean duplex	Limited to 300 deg C maximum	desalination plants

PH STAINLESS STEELS

• A closer look

	Advantages	Disadvantages	Applications
1	Very high strength and better toughness than martensitic	Quite expensive	pumps, shafts.
2	Better corrosion resistance than martensitic	Complex process route	valves, critical aerospace components
3		Not easy to weld	
4		Not easy to form	

STAINLESS STEEL

MECHANICAL AND PHYSICAL PROPERTIES

TENSILE STRENGTH

- Tensile Properties
 - A = Austenitic
 - **B** = Ferritic
 - C = Duplex
 - **D** = Martensitic
 - E = PH

TENSILE STRENGTH

- Toughness
 'Resistance to crack propagation'
 - Austenitics very tough even at cryogenic temperatures
 - All other stainless types exhibit prominent ductile-brittle transition, typically at sub zero temperatures

FATIGUE & CREEP PROPERTIES

Fatigue Endurance Limit: Austenitic and Duplex Stress for rupture in 1000hr: Martensitic, Ferritic, Austenitic

THERMAL PROPERTIES

	Grade		Thermal Expansion (10 ⁻⁶ K ⁻¹)	Thermal Conductivity (W m ⁻¹ K ⁻¹)	Density (kg m ⁻³)
1.40	16 Ferritic		10.0	25	7.7
1.40	57 Martensit	ic	10.0	25	7.7
1.43	01 Austenitio	C	16.0	15	7.9
1.4462 Duplex		13.0	15	7.8	
1.454	42 PH		10.9	16	7.8
Grade Therma		al Conductivity	Thermal Expans	sion	
	Mild Steel		1	1	
	304	4		1.5	
	430		3.8	0.9	

STAINLESS STEEL

FACTORS AFFECTING WELDABILITY

WELDING ISSUES: 'SENSITIZATION' AND IC

WELDABILITY OF AUSTENITIC STAINLESS STEEL

- Positive factors
 - Low carbon reduces risk of sensitization
 - Single phase no concern about structure changes
 - No preheat or post weld heat treatment
 - Low grain growth-weld toughness retained in large sections
- Negative Factors
 - High thermal expansion and low thermal conductivity
 - Solifidification cracking composition balanced to give 5-10% ferrite
 - Risk of distortion in thin sections

WELDABILITY OF FERRITIC STAINLESS STEEL

- Positive factors
 - Low carbon reduces risk of carbide formation
 - Single phase
 - Lower thermal expansion and higher thermal conductivity hence lower risk of distortion
- Negative Factors
 - High grain growth loss of weld toughness in thick sections
 - Exception 1.4003 (S40977) low carbon martensite allows welding of thick sections

WELDABILITY OF DUPLEX STAINLESS STEEL

- Positive factors
 - Part austenitic relative good toughness in thick sections down to minus 80°C
- Negative Factors
 - Complex metallurgy, for phase balance tight control of welding parameters required
 - Embrittling phases relatively easy to form
 - Potential for loss of corrosion resistance and mechanical properties
 - Specific weld and welder qualification required

- Positive factors
 - Low carbon reduces risk of carbide formation
 - Single phase
 - Lower thermal expansion and higher thermal conductivity
 - Leading to <u>reduced distortion</u>
- Negative Factors
 - High grain growth loss of weld toughness in thick sections
 - Exception 1.4003 (S40977) low carbon martensite allows welding of thick sections

WELDING STAINLESS TO STAINLESS: RULES OF THUMB

- Dissimilar Welding
 - Choice of filler usually determined by the more highly alloyed metal e.g. when welding 1.4307 (304L) to 1.4404 (316L) for example, 19Cr12Ni3Mo type filler used
- Ferritic Steels
 - When welding ferritic grades, austenitic fillers are often selected to improve mechanical properties
- Superaustenitic grades
 - For superaustenitic grades, nickel-base fillers over alloyed with molybdenum are often used to compensate for segregation reduce the amount of intermetallic phases !
- High Temperature Austenitics
 - To avoid the detrimental effect of secondary phases precipitating at 650-960°C specially designed fully austenitic fillers (253 MA-NF) can be used

WELDING STAINLESS TO MILD STEEL: RULES OF THUMB

- When Welding Stainless Steel to Mild Steel:-
 - To optimise crack resistance use over alloyed and high ferrite electrode (23Cr12Ni or 23Cr12Ni2Mo)
 - When welding stainless steel to mild or low alloy steels reduce weld dilution as much as possible. Limit heat input to 1.4kJ/mm and interpass temperature must be <150°C
 - Due to risk of pore formation avoid welding to mild steel that has a coating of prefabrication primer
 - Where High temperature applications (creep properties) are important use nickel base fillers to minimise carbon diffusion from mild steel into the weld metal – this can reduce strength of HAZ in mild steel

Recommended practice is to clean welds In practice, many welds are left untreated - very light tinting, non-aggressive environments, invisible applications

BSSA