Thick section laser welding

Chris Allen

Materials Joining and Engineering Technologies
How thick is thick?

Possible applications

Advantages and challenges of thick section laser welding

‘Traditional’ thick section laser welding techniques
 - CO₂ laser welding with plasma control
 - Hybrid CO₂-MIG/MAG welding

Newer techniques
 - 1µm laser source welding with plume control
 - Hybrid welding with 1µm laser sources
 - Multi-pass welding
 - Reduced pressure welding

Conclusions
How Thick is “Thick”?...

$t < 1\text{mm}$?
How Thick is “Thick”?...

t<1mm?
How Thick is “Thick”?...

t<1mm?

☓

 Courtesy of Fiat

t<2mm?
How Thick is “Thick”?...

t<1mm?

☓

 tôn<2mm?

☓

Courtesy of Fiat
How Thick is “Thick”?

- $t < 1\text{mm}$?
- $t < 2\text{mm}$?
- $t > 100\text{mm}$?

Courtesy of Fiat
How Thick is “Thick”?...

- $t < 1\text{ mm}$?
- $t < 2\text{ mm}$?
- $t > 100\text{ mm}$?

Courtesy of Fiat
Advantages and Challenges

Advantages
- Deep penetration
- Low heat input
- Low distortion
- Often single pass
- Often single-sided
- Narrow welds
- Non-contact
- Vacuum not essential
- Automated
- Robotic
 - fibre-delivered lasers

Challenges
- High power systems
- Investment
- Running costs
- Beam safety
- Process caveats, including
 - Part preparation, positioning and fit-up
 - Weld pool control
 - Plasma or plume control
‘Traditional’ High Power Laser Welding

- CO₂ laser sources
 - High powers possible
 - Plasma build-up between keyhole and beam
 - Can attenuate power arriving at workpiece
 - Needs replacement with a gas which is hard to ionise: He
 - Single-sided welding to 12mm
 - Double-sided to 25mm
‘Traditional’ High Power Laser Welding

- CO\textsubscript{2} laser sources
 - High powers possible
 - Plasma build-up between keyhole and beam
 - Can attenuate power arriving at workpiece
 - Needs replacement with a gas which is hard to ionise: He
 - Single-sided welding to 12mm
 - Double-sided to 25mm
‘Traditional’ High Power Laser Welding

- CO$_2$ laser sources
 - High powers possible
 - Plasma build-up between keyhole and beam
 - Can attenuate power arriving at workpiece
 - Needs replacement with a gas which is hard to ionise: He
 - Single-sided welding to 12mm
 - Double-sided to 25mm
‘Traditional’ High Power Laser Welding

- **CO₂ laser sources**
 - High powers possible
 - Plasma build-up between keyhole and beam
 - Can attenuate power arriving at workpiece
 - Needs replacement with a gas which is hard to ionise: He

- Single-sided welding to 12mm
- Double-sided to 25mm
CO\(_2\) laser sources
- High powers possible
- Plasma build-up between keyhole and beam
- Can attenuate power arriving at workpiece
- Needs replacement with a gas which is hard to ionise: He
- Single-sided welding to 12mm
- Double-sided to 25mm
Hybrid Laser-Arc Welding

- Advantages over laser welding
 - Filler metal addition
 - Improved fit-up tolerance
 - Improved weld quality and profile
 - Control of weld microstructure
 - Control of hot cracking

- Advantages over arc welding
 - Higher speed
 - Deeper penetration
 - Higher productivity
 - Lower distortion
 - Lower rework
 - Lower per part manufacturing costs
Hybrid Welding for Shipbuilding

- Hybrid CO₂-MIG/MAG welding used in ship panel fabrication

Image courtesy FORCE Institute
Hybrid Welding for Shipbuilding

- Hybrid CO$_2$-MIG/MAG welding used in ship panel fabrication

![4mm butt weld](image1.png)

![4mm sub-arc weld to same scale](image2.png)
Hybrid Welding for Shipbuilding

- Hybrid CO$_2$-MIG/MAG welding used in ship panel fabrication
Hybrid CO₂-MIG/MAG welding used in ship panel fabrication
A range of engineering alloys can be welded to high quality
- Optimisation of parameters (power, focused spot size, welding speed etc) essential
- Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
A range of engineering alloys can be welded to high quality

- Optimisation of parameters (power, focused spot size, welding speed etc) essential

- Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
A range of engineering alloys can be welded to high quality

- Optimisation of parameters (power, focused spot size, welding speed etc) essential

Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
A range of engineering alloys can be welded to high quality
- Optimisation of parameters (power, focused spot size, welding speed etc) essential

Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds.
A range of engineering alloys can be welded to high quality

- Optimisation of parameters (power, focused spot size, welding speed etc) essential

- Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
A range of engineering alloys can be welded to high quality

- Optimisation of parameters (power, focused spot size, welding speed etc) essential

- Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
A range of engineering alloys can be welded to high quality

- Optimisation of parameters (power, focused spot size, welding speed etc) essential

- Materials exhibit a maximum thickness beyond which a given welding approach will no longer produce acceptable quality welds
Thick Section Welding with 1µm Sources

- Plume dispersion (e.g. using a high mass flow gas jet) *can* then be required for process/keyhole stability and weld quality.
Thick Section Welding with 1μm Sources

- Plume dispersion (e.g. using a high mass flow gas jet) *can* then be required for process/keyhole stability and weld quality.
Thick Section Welding with 1µm Sources

- Plume dispersion (e.g. using a high mass flow gas jet) *can* then be required for process/keyhole stability and weld quality.
- Plume dispersion (e.g. using a high mass flow gas jet) can then be required for process/keyhole stability and weld quality.
Thick Section Stake Welds made through dissimilar steels, using plume dispersion.
Hybrid Welding with 1µm Sources

- Hybrid welding also possible using high power fibre-delivered fibre and disc laser beams

High speed, low distortion hybrid fibre laser-MIG butt welds in Al box sections
Hybrid welding also possible using high power fibre-delivered fibre and disc laser beams

- Vertical-up hybrid welding of thick Al alloy plate
Hybrid Welding with 1µm Sources

- Hybrid welding also possible using high power fibre-delivered fibre and disc laser beams

Butt weld, 8mm S355 steel

Butt weld, 6mm 304L

Root weld in steel pipe
Multi-pass welding

- Suitable for materials typ. >25mm in thickness
- TWI has completed butt joints in materials up to 60mm in thickness
- Joint completion strategy can comprise
 - Double sided root weld
 - Using keyhole welding
 - Subsequent fill and cap sequence
 - Using conduction-limited beam melting of a wire feed, in to a narrow groove preparation
Multi-pass welding

- Suitable for materials typ. >25mm in thickness
- TWI has completed butt joints in materials up to 60mm in thickness
- Joint completion strategy can comprise
 - Double sided root weld
 - Using keyhole welding
 - Subsequent fill and cap sequence
 - Using conduction-limited beam melting of a wire feed, in to a narrow groove preparation
- Suitable for materials typ. >25mm in thickness
- TWI has completed butt joints in materials up to 60mm in thickness
- Joint completion strategy can comprise
 - Double sided root weld
 - Using keyhole welding
 - Subsequent fill and cap sequence
 - Using conduction-limited beam melting of a wire feed, in to a narrow groove preparation
Multi-pass root welding

- Single or double-sided root welding possible, depending on access

- Overall root face thickness needed depends on parameters used
 - e.g. laser power

8mm single-sided root

13mm single-sided root
Multi-pass root welding

- Single or double-sided root welding possible, depending on access.

- Overall root face thickness needed depends on parameters used:
 - e.g. laser power

13mm single-sided weld
20mm double-sided weld
Multi-pass fill welding

- Conduction-limited melting of wire into groove using defocused beam
- Power, speed and wire feed rate optimised for high quality fills
 - Two examples using 5kW laser shown
- Method can complete joints in 60mm thickness material
- Transfer of method to other materials possible
Multi-pass fill welding

- Conduction-limited melting of wire into groove using defocused beam
- Power, speed and wire feed rate optimised for high quality fills
 - Two examples using 5kW laser shown
- Method can complete joints in 60mm thickness material
- Transfer of method to other materials possible
Multi-pass weld qualities and properties

- **Following process development**
 - **Quality**
 - Welds free of cracks, pores and lack of fusion
 - Positive cap and root profiles
 - **Properties**
 - Welds strength over-matched (in steels)
 - Rp(0.2%) \sim 400MPa, UTS \sim 560MPa, ε \sim 23% (for S355 steel)
 - Without preheat
 - Root welds can be unacceptably hard (dep. on codes), \leq 400HV10
 - Parts of welded joint can be unacceptably brittle, CVN \geq 22J at -20°C
Multi-pass weld economics

- Based on coupon trials, when compared with arc welding
 - Joint completion comparable with or faster
 - Uses less gas shielding and filler wire
 - Five-fold running cost savings estimated possible
- Energy usage not excessive
 - Laser wall-plug efficiency improving
 - Beam on times short, given joint completion rate
- Joint completion still faster with EB
 - But EB requires a vacuum!

![Graph showing welding time, min, for 1m long butt in 40mm plate]
Reduced pressure welding

- Atmospheric pressure welding
 - 10µm source = plasma
 - 1µm source = plume
 - Both can attenuate beam
 - If attenuation varies during welding, process can be unstable

- Welding in vacuum
 - Boiling point significantly suppressed
 - Plasma: temperature and density reduces
 - Plume: beam attenuation also measurably reduces

Reduced pressure welding

- These changes can also occur at reduced pressure.
- TWI has been applying its sliding seal technology developed for reduced pressure EBW to LBW.
Reduced pressure welding recently demonstrated using a small-sized, robot-manoeuvrable, sliding seal chamber.
Conclusions

- Thick section laser welding relevant to land, sea and air transport applications, and vessels and pipelines
- Advantages include single pass deep penetration welds, introducing little distortion
- Traditionally done by high power CO\textsubscript{2} lasers, often requiring plasma control
- Process hybridised with arc welding, e.g. for fit-up tolerance

- High power disc and fibre lasers now have the same or better capabilities, albeit plume control can still be needed
- New processes also being developed, including multi-pass and reduced pressure welding
Contact

Chris Allen
Principal Project Leader
Laser and Sheet Processes
TWI Ltd

Tel: +44 (0)1223 899 000
E-mail: chris.allen@twi.co.uk
Web: www.twi-global.com