Failures in stainless steel welds – examples and causes

Briony Holmes
Overview of a few real-life examples

1. Intermetallic precipitation – Sigma phase
2. HAZ Liquation cracking
3. Solidification cracking
4. Stress corrosion cracking (SCC)
5. Heat tint
1. Sigma phase

Case Study A Loss of corrosion resistance
Case Study B Embrittlement
Case Study A
Superduplex stainless steel

- Subsea spoolpiece
- Weld metal/HAZ crack
- Hydrogen embrittlement
- Pitting corrosion and preferential phase corrosion due to sigma phase

Sigma phase

Preferential phase attack

Sigma phase
Causes of Failure

- Superduplex stainless steel
- Girth weld repair
 - High heat input
- Sigma phase precipitation
- Pitting corrosion
- Hydrogen embrittlement crack
 - Hydrogen from corrosion
 - Tensile stress
Case Study B
Duplex stainless steel

- Dye penetrant showing weld metal/HAZ crack
Brittle fracture due to sigma phase
Duplex stainless steel
Microstructure

Sigma phase
Composition of phases
EDX spectrum

Sigma phase (white)
Rich in Cr and Mo
Causes of failure

- Duplex stainless steel
- Sigma phase precipitation
- Incorrect heat treatment of forging
- Tensile stress
 - Residual stress
 - Applied stress during hydrotest
2. HAZ Liqutation cracking
HAZ Liquation Cracking

- Short intergranular cracks:
 - In high-temperature zone of the HAZ, or
 - In previously deposited weld metal, during a subsequent run
- Due to formation of grain boundary liquid films at temperatures below the alloy melting temperature
- On cooling this liquid is unable to accommodate tensile strains, caused by contraction, and cracks may form

http://www.twi.co.uk/technical-knowledge/knowledge-summaries/liquation-cracking/
1a) Photomacrograph of HAZ liquation cracking in austenitic stainless steel cladded with a nickel alloy weld metal. Location of liquation cracking indicated by arrows;
1b) Liquation cracking in AISI 316 austenitic stainless steel weld metal, reheated by subsequent weld bead. Location of liquation cracking indicated by arrows;
1c) HAZ liquation cracking in AISI 310 austenitic stainless steel (Magn. x 114);
1d) Scanning electron micrograph of liquated film on liquation crack surface in an AISI 316 austenitic stainless steel weld metal (Magn. x 1800)
Factors affecting liquation cracking

Diagram showing:
- Resist Cracks vs. Scavengers for harmful trace elements, e.g., Mn and rare earths
- Promote Cracks vs. Residual and trace elements, principally B, C, N, Si, S & P
- δ-ferrite content of HAZ
- Grain size
- Weld arc energy

Mo
3. Solidification Cracking
Butt weld
Repair weld

Solidification crack arrowed
Solidification crack fracture face
Causes of failure

- Duplex stainless steel
 - Less common than austenitic

- Bend test failure

- Factors involved in solidification cracking
 - Tensile stress
 - Delta ferrite content
 - Sulphur

- Cause - Unusually wide weld bead due to weaving?
4. Stress corrosion cracking (SCC)
Stress corrosion cracking

- Austenitic stainless steel, pipe girth weld
Stress corrosion cracking

- Austenitic stainless steel
- Branched, transgranular cracks
Causes of Failure

- Chloride-containing environment
- Residual tensile stresses from welding
- Weld profile
 - Difficult to drain – liquid collection
 - Concentration of chlorides
- Elevated temperature (55-60°C)
5. Heat tint
Heat tint

Pitting and crevice corrosion

- Lowered corrosion resistance
- Corrosion pits in heat tint
- 304L stainless steel welded pipe
- Pitting corrosion much larger under the surface than visible on the surface
Causes of failure

- Oxidation of the root bead + adjacent HAZ during welding of SS.
- Cr-rich scale is formed, the surface becomes Cr-depleted which impairs corrosion resistance.

- Avoid heat tint:
 - Need good shielding and backing (purging) gas.
 - Shield: Ar, Ar/He, Ar/N mixtures.
 - Purge: Ar or N₂.
 - Use several volumes of purge gas before welding.
 - Maintain purge for 3 or 4 weld passes in multi-pass weld.

- May also pickle and passivate
Welding can introduce or promote various failure mechanisms

Best practice for welding should be followed

For further guidance:

http://www.twi-global.com/technical-knowledge/
Briony Holmes
Materials Department (Stainless Steels and Non-Ferrous Alloys)
TWI Ltd

Tel: +44 (0)1223 899 000
E-mail: briony.holmes@twi.co.uk
Web: www.twi-global.com